
with MikroTik CHR 
Containerlab, and 

Ansible

Tomáš Horyl
Senior Network Engineer 

narrowin.ch

Building a 
Digital Twin 



2

Who?

Tomáš Horyl 
 Network design and development
 Linux system administration
 Computer and network infrastructure maintenance

narrowin.ch
 Swiss university spin-off 
 Networking and security
 Lightweight Network Explorer



PLAN TEST

DEPLOYVALIDATE

1 2

34

Why? Where we want to go…

DIGITAL TWIN



PLAN TEST

DEPLOYVALIDATE

1 2

34

Why? Where we want to go…

DIGITAL TWIN





6

Introducing Containerlab

https://containerlab.dev

 Containerized network operating systems (NOS) 

 Can also launch traditional virtual machine-based routers

 Can interconnect arbitrary Linux containers

 Runs network operating systems in containers (Docker/Podman)

 Linux network namespaces 

 Ideal solution for test environments

 Runs network OSes in omnipresent containers

 Covers lots of major vendors

 Easy topology definition (text based - scriptable).

«Containerlab provides a CLI for 
orchestrating and managing container-
based networking labs. It starts the 
containers, builds a virtual wiring between 
them to create lab topologies of users’ 
choice and manages labs lifecycle.»

https://containerlab.dev/


7

Containerlab: How does the topology file look like?

containerlab deploy  deploy the topology (start the lab).
containerlab destroy  shut down the lab.
ssh clab-mylab-mkt1  connect to the node.
Containerlab creates static entries in the /etc/hosts file and sets up /etc/ssh_config.d/ to allow you to use SSH.



8

… and there‘s a helpful VSCode extension

Simplified workflow for almost everything from the command line. 
Useful even for network engineers – like me – who are more accustomed 
to working in a CLI-driven environment ;-)

Features:
 Lab explorer: Real-time monitoring of lab status, including nodes and 

links. 
 Lab Editor: topology modifications within VS Code environment. 
 TopoViewer: visual representation of the lab setup. 

 Packet Capture: Wireshark integration, capture traffic on a selected link. 
 Direct CLI Access: connect to node consoles. 
 Link Impairment Tuning: simulation of network delays, packet loss, etc. 



9

but CHR can‘t be containerized, right…?

https://github.com/hellt/vrnetlab

 Many routing network operating systems cannot be containerized and can only run as 
virtual machines.

 With vrnetlab integration, Containerlab is capable of launching topologies with VM-
based routers within the same topology definition file, alongside containerized NOS.

Important: Containerlab uses original vrnetlab project fork hellt/vrnetlab. Container built 
with upstream vrnetlab project will not be compatible with Containerlab.

https://github.com/hellt/vrnetlab


10

Introducing Ansible: An agentless automation tool

Manual Deployment
..of configurations across multiple devices 
is time-consuming, error-prone, 
inconsistent and inefficient.

🥱
Automated Deployment
Automate tasks efficiently & free up time for critical operations
 Predefined configuration templates 
 Deploying changes with a single command
 Control node can be any Linux-based system with Python installed, 

including Windows WSL.

😎

Detailed installation instructions: https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html


11

How Ansible Handle Network OSes

Network OSes with Python interpreter available:
• Ansible uses SSH or API to connect.
• Copies Python modules to the remote device and executes them locally on the device.
• Full Ansible module support.

MikroTik RouterOS without Python support:
• Ansible cannot copy Python scripts to execute them on the host.
• Instead, it relies on API or CLI commands.
• Command (community.routeros.command module):

• Human-readable, works over SSH.
• Not structured, parsing output is complex.

• API (community.routeros.api module):
• Structured and machine-readable output (no need for complex output parsing).
• Faster processing for batch operations.
• Requires enabling API service (/ip service enable api).
• Not all CLI features are available.



12

Getting started with Ansible

Getting started can feel overwhelming and complex at first... 
but once you get started it’s straightforward – I promise!

get kick-started: 

https://github.com/narrowin/ansible-mikrotik

 Clone the repository.
 Install requirements: pip install -r requirements.txt.
 Get Ansible Galaxy collections: ansible-galaxy collection install -r requirements.yml -p collections 
 Or you can try the repo in self-contained DevContainers (DevPod) or even in GitHub CodeSpaces.

https://github.com/narrowin/ansible-mikrotik


13

Ansible Inventory

 Inform Ansible where the devices are and how to connect to them.
 Build inventory file with management IP addresses of network nodes, stored in inventory/mikrotik. The 

node/network device in Ansible is referred to as a host.
 Modify credentials and SSH keys in inventory/mikrotik.
 Use inventory groups variables (inventory/group_vars) and host-specific variables (inventory/host_vars) to 

define device settings.

Groups:



14

1st example: Ansible Backup Playbook

 Backing up device configurations is the first crucial step in automation—anyone who has had to restore a device knows its 
importance. And it’s also a good starting step.

 The backup process leverages the community.routeros.command module, which is ideal for running commands and retrieving 
output, though it lacks idempotency for configuration management.

 The backup playbook requires only:
 The Ansible host, provided by Ansible as inventory_hostname
 The backup directory local_backups_top_folder, defined in inventory/group_vars/all.yml



15

2nd example: Step-By-Step Hosts Onboarding - Hostname

 Transition to the community.routeros.api module for configuration tasks, as it ensures idempotency.
 Why is idempotency important?

 Start with a simple task - hostname checking.

routeros_system_identity – inventory/group_vars/mikrotik/system_identity.yml

ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --check --diff

 Idempotency is a key principle in Ansible automation that ensures running the same playbook multiple times 
produces the same result, regardless of how many times it is executed.

 Idempotency ensures that the outcome is always repeatable and predictable (e.g. nobody wants to duplicate 
already existing firewall rules by appending to them).



16

3rd example Ansible - Onboarding - Interfaces (1/2)

 /interface ethernet

 The difference from the hostname - variable number of ports.

 routeros_interface_ethernet - in inventory/group_vars on various levels and inventory/host_vars for device specific 
configuration.

 Common values set for all grouped devices on higher level (group_vars).
 Device specific values overwritten in host_vars.



17

3rd example Ansible - Onboarding - Interfaces (2/2)

 Before deploying the configuration, perform a dry-run to preview the changes without applying them.
 ansible-playbook playbooks/mikrotik-configure.yml --tags ethernet_ports --check --diff

 Review the diff output, adjust values as needed.
 Repeat the process until the expected configuration is achieved.
 Once satisfied, deploy the final configuration without --check --diff



18

Live Demo / Screencast
of this process 



19

Live Demo / Screencast
Final Network-Wide Deployment



20

Ansible - How To Transform Real Network Into Digital Twin 
and vice-versa
 Start with the inventory (how to reach the devices).
 It is always good practice to start with backup (leverage Ansible to get your devices' backups).
 Take small steps when onboarding existing devices: 

Limit your ground by doing dry-runs (--check) on limited number of hosts (--limit) 
and with specific features (--tags).

Example:
 Let us start with hostname feature only on sw-acc-01.
 ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --check --diff --limit sw-acc-01

 Review the diff, change the variables accordingly and deploy the change.
 ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --limit sw-acc-01

 Once this works, do the dry-run for all switches or another manageable group of hosts.
 ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --check --diff --limit mikrotik_switches

 Review the diffs, ...
 Repeat for all desired configuration features until you achieve your goal.



21

Going Beyond - Incorporating Ansible In Your Workflows

 New device provisioning.

 Full device configuration.

 Regular configuration backups (text and binary formats), preferably integrated with some version control system (Git).
 Ad-hoc firmware upgrades (TBD).

 Zero-Touch Provisioning - automate device bring-up with minimal steps.
 Baseline configuration - management IP, SSH keys - ensuring the device is accessible by 

Ansible.

 All common features (applicable to all network devices - automatically inherited by being part 
of group mikrotik).

 Platform specific features inherited by being assigned to the correct platform group 
mikrotik_switches/mikrotik_siwtches_24ports_crs326_24g/...

 Host specific features assigned in host_vars.



22

Conclusion

Test-before-deploy 
approach in critical 

networks
Centralized Network 

Source of Truth
Full-cycle 

automation: design-
test-deploy-observe


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

