
with MikroTik CHR 
Containerlab, and 

Ansible

Tomáš Horyl
Senior Network Engineer 

narrowin.ch

Building a 
Digital Twin 



2

Who?

Tomáš Horyl 
 Network design and development
 Linux system administration
 Computer and network infrastructure maintenance

narrowin.ch
 Swiss university spin-off 
 Networking and security
 Lightweight Network Explorer



PLAN TEST

DEPLOYVALIDATE

1 2

34

Why? Where we want to go…

DIGITAL TWIN



PLAN TEST

DEPLOYVALIDATE

1 2

34

Why? Where we want to go…

DIGITAL TWIN





6

Introducing Containerlab

https://containerlab.dev

 Containerized network operating systems (NOS) 

 Can also launch traditional virtual machine-based routers

 Can interconnect arbitrary Linux containers

 Runs network operating systems in containers (Docker/Podman)

 Linux network namespaces 

 Ideal solution for test environments

 Runs network OSes in omnipresent containers

 Covers lots of major vendors

 Easy topology definition (text based - scriptable).

«Containerlab provides a CLI for 
orchestrating and managing container-
based networking labs. It starts the 
containers, builds a virtual wiring between 
them to create lab topologies of users’ 
choice and manages labs lifecycle.»

https://containerlab.dev/


7

Containerlab: How does the topology file look like?

containerlab deploy  deploy the topology (start the lab).
containerlab destroy  shut down the lab.
ssh clab-mylab-mkt1  connect to the node.
Containerlab creates static entries in the /etc/hosts file and sets up /etc/ssh_config.d/ to allow you to use SSH.



8

… and there‘s a helpful VSCode extension

Simplified workflow for almost everything from the command line. 
Useful even for network engineers – like me – who are more accustomed 
to working in a CLI-driven environment ;-)

Features:
 Lab explorer: Real-time monitoring of lab status, including nodes and 

links. 
 Lab Editor: topology modifications within VS Code environment. 
 TopoViewer: visual representation of the lab setup. 

 Packet Capture: Wireshark integration, capture traffic on a selected link. 
 Direct CLI Access: connect to node consoles. 
 Link Impairment Tuning: simulation of network delays, packet loss, etc. 



9

but CHR can‘t be containerized, right…?

https://github.com/hellt/vrnetlab

 Many routing network operating systems cannot be containerized and can only run as 
virtual machines.

 With vrnetlab integration, Containerlab is capable of launching topologies with VM-
based routers within the same topology definition file, alongside containerized NOS.

Important: Containerlab uses original vrnetlab project fork hellt/vrnetlab. Container built 
with upstream vrnetlab project will not be compatible with Containerlab.

https://github.com/hellt/vrnetlab


10

Introducing Ansible: An agentless automation tool

Manual Deployment
..of configurations across multiple devices 
is time-consuming, error-prone, 
inconsistent and inefficient.

🥱
Automated Deployment
Automate tasks efficiently & free up time for critical operations
 Predefined configuration templates 
 Deploying changes with a single command
 Control node can be any Linux-based system with Python installed, 

including Windows WSL.

😎

Detailed installation instructions: https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html


11

How Ansible Handle Network OSes

Network OSes with Python interpreter available:
• Ansible uses SSH or API to connect.
• Copies Python modules to the remote device and executes them locally on the device.
• Full Ansible module support.

MikroTik RouterOS without Python support:
• Ansible cannot copy Python scripts to execute them on the host.
• Instead, it relies on API or CLI commands.
• Command (community.routeros.command module):

• Human-readable, works over SSH.
• Not structured, parsing output is complex.

• API (community.routeros.api module):
• Structured and machine-readable output (no need for complex output parsing).
• Faster processing for batch operations.
• Requires enabling API service (/ip service enable api).
• Not all CLI features are available.



12

Getting started with Ansible

Getting started can feel overwhelming and complex at first... 
but once you get started it’s straightforward – I promise!

get kick-started: 

https://github.com/narrowin/ansible-mikrotik

 Clone the repository.
 Install requirements: pip install -r requirements.txt.
 Get Ansible Galaxy collections: ansible-galaxy collection install -r requirements.yml -p collections 
 Or you can try the repo in self-contained DevContainers (DevPod) or even in GitHub CodeSpaces.

https://github.com/narrowin/ansible-mikrotik


13

Ansible Inventory

 Inform Ansible where the devices are and how to connect to them.
 Build inventory file with management IP addresses of network nodes, stored in inventory/mikrotik. The 

node/network device in Ansible is referred to as a host.
 Modify credentials and SSH keys in inventory/mikrotik.
 Use inventory groups variables (inventory/group_vars) and host-specific variables (inventory/host_vars) to 

define device settings.

Groups:



14

1st example: Ansible Backup Playbook

 Backing up device configurations is the first crucial step in automation—anyone who has had to restore a device knows its 
importance. And it’s also a good starting step.

 The backup process leverages the community.routeros.command module, which is ideal for running commands and retrieving 
output, though it lacks idempotency for configuration management.

 The backup playbook requires only:
 The Ansible host, provided by Ansible as inventory_hostname
 The backup directory local_backups_top_folder, defined in inventory/group_vars/all.yml



15

2nd example: Step-By-Step Hosts Onboarding - Hostname

 Transition to the community.routeros.api module for configuration tasks, as it ensures idempotency.
 Why is idempotency important?

 Start with a simple task - hostname checking.

routeros_system_identity – inventory/group_vars/mikrotik/system_identity.yml

ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --check --diff

 Idempotency is a key principle in Ansible automation that ensures running the same playbook multiple times 
produces the same result, regardless of how many times it is executed.

 Idempotency ensures that the outcome is always repeatable and predictable (e.g. nobody wants to duplicate 
already existing firewall rules by appending to them).



16

3rd example Ansible - Onboarding - Interfaces (1/2)

 /interface ethernet

 The difference from the hostname - variable number of ports.

 routeros_interface_ethernet - in inventory/group_vars on various levels and inventory/host_vars for device specific 
configuration.

 Common values set for all grouped devices on higher level (group_vars).
 Device specific values overwritten in host_vars.



17

3rd example Ansible - Onboarding - Interfaces (2/2)

 Before deploying the configuration, perform a dry-run to preview the changes without applying them.
 ansible-playbook playbooks/mikrotik-configure.yml --tags ethernet_ports --check --diff

 Review the diff output, adjust values as needed.
 Repeat the process until the expected configuration is achieved.
 Once satisfied, deploy the final configuration without --check --diff



18

Live Demo / Screencast
of this process 



19

Live Demo / Screencast
Final Network-Wide Deployment



20

Ansible - How To Transform Real Network Into Digital Twin 
and vice-versa
 Start with the inventory (how to reach the devices).
 It is always good practice to start with backup (leverage Ansible to get your devices' backups).
 Take small steps when onboarding existing devices: 

Limit your ground by doing dry-runs (--check) on limited number of hosts (--limit) 
and with specific features (--tags).

Example:
 Let us start with hostname feature only on sw-acc-01.
 ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --check --diff --limit sw-acc-01

 Review the diff, change the variables accordingly and deploy the change.
 ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --limit sw-acc-01

 Once this works, do the dry-run for all switches or another manageable group of hosts.
 ansible-playbook playbooks/mikrotik-configure.yml --tags hostname --check --diff --limit mikrotik_switches

 Review the diffs, ...
 Repeat for all desired configuration features until you achieve your goal.



21

Going Beyond - Incorporating Ansible In Your Workflows

 New device provisioning.

 Full device configuration.

 Regular configuration backups (text and binary formats), preferably integrated with some version control system (Git).
 Ad-hoc firmware upgrades (TBD).

 Zero-Touch Provisioning - automate device bring-up with minimal steps.
 Baseline configuration - management IP, SSH keys - ensuring the device is accessible by 

Ansible.

 All common features (applicable to all network devices - automatically inherited by being part 
of group mikrotik).

 Platform specific features inherited by being assigned to the correct platform group 
mikrotik_switches/mikrotik_siwtches_24ports_crs326_24g/...

 Host specific features assigned in host_vars.



22

Conclusion

Test-before-deploy 
approach in critical 

networks
Centralized Network 

Source of Truth
Full-cycle 

automation: design-
test-deploy-observe


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

